Learning Objectives

By the end of lecture, students should be able to:

- 1. Apply ANOVA for comparison of means in more than 2 groups
- 2. Compute one way and two way ANOVA for a given data set
- 3. Interpret the results of ANOVA

ANOVA (Analysis of Variance)

- Is a statistical technique specially designed to compare more than 2 means
- Types
 - One way ANOVA
 - Two way ANOVA

Difference b/w one way & two way

- One way ANOVA :
 - In one way ANOVA, we take into account only one variable, say the effect of different types of fertilizers on yield.
- Two way ANOVA: you could use a two-way ANOVA to understand whether there is an interaction between gender and educational level on test anxiety amongst university students, where gender (males/females) and education level (undergraduate/postgraduate) are your independent variables, and test anxiety is your dependent variable.

Data required

One way ANOVA or single factor ANOVA:

· Determines means of

≥ 3 independent groups

significantly different from one another.

N

- Only 1 independent variable (factor/grouping variable) with ≥3 levels
- Grouping variable- nominal
- Outcome variable- interval or ratio

Post hoc tests help determine where difference exist

Steps ANOVA

- 1.Define null & alternative hypotheses
- 2. State Alpha
- 3. Calculate degrees of Freedom
- 4. State decision rule
- 5. Calculate test statistic
- Calculate variance between samples
- Calculate variance within the samples
- Calculate ratio F
- If F is significant, perform post hoc test
- 6. State Results & conclusion

Calculate test statistic

- calculate variance between samples
- calculate variance within samples

Calculating variance between samples

- Calculate the mean of each sample.
- Calculate the Grand average
- Take the difference between means of various samples & grand average.
- Square these deviations & obtain total which will give sum of squares between samples (SSC)
- Divide the total obtained in step 4 by the degrees of freedom to calculate the mean sum of square between samples (MSC).

Calculating Variance within Samples

- Calculate mean value of each sample
- Take the deviations of the various items in a sample from the mean values of the respective samples.
- Square these deviations & obtain total which gives the sum of square within the samples (SSE)
- Divide the total obtained in 3rd step by the degrees of freedom to calculate the mean sum of squares within samples (MSE).

The mean sum of squares

Calculation of MSC-Mean sum of Squares between samples

$$MSC = \frac{SSC}{k-1}$$

Calculation of MSE Mean Sum Of Squares within samples

$$MSE = \frac{SSE}{n-k}$$

k= No of Samples,

n= Total No of observations

Calculation of F statistic

$$F = \frac{Variability\ between\ groups}{Variability\ within\ groups}$$

F- statistic =
$$\frac{MSC}{MSE}$$

Compare the F-statistic value with F(critical) value which is obtained by looking for it in F distribution tables against degrees of freedom. The calculated value of F > table value H0 is rejected

Post-hoc Tests

- Used to determine which mean or group of means is/are significantly different from the others (significant
 F)
- Depending upon research design & research question:
- ✓ Bonferroni (more powerful)

Only some pairs of sample means are to be tested Desired alpha level is divided by no. of comparisons

✓ Tukey's HSD Procedure

when all pairs of sample means are to be tested

√ Scheffe's Procedure (when sample sizes are unequal)

Example- one way ANOVA

Example: 3 samples obtained from normal populations with equal variances. Test the hypothesis that sample means are equal

8	7	12
10	5	9
7	10	13
14	9	12
11	9	14

1.Null hypothesis -

No significant difference in the means of 3 samples

2. State Alpha i.e 0.05

3. Calculate degrees of Freedom

k-1 & n-k = 2 & 12

4. State decision rule

Table value of F at 5% level of significance for d.f 2 & 12 is 3.88

The calculated value of F > 3.88, H0 will be rejected

5. Calculate test statistic

Variance BETWEEN samples (M1=10, M2=8,M3=12)

Sum of squares between samples (SSC) =

Calculation of Mean sum of Squares between samples (MSC)

$$MSC = \frac{SSC}{k-1} = \frac{40}{2} = 20$$

k= No of Samples, n= Total No of observations

Variance WITH IN samples (M1=10, M2=8,M3=12)

X1	(X1 – M1) ²	X2	(X2- M2) ²	ХЗ	(X3- M3) ²	
8	4	7	1	12	0	
10	0	5	9	9	9	
7	9	10	4	13	1	
14	16	9	1	12	0	
11	1	9	1	14	4 4	
	30		16		14	

Sum of squares within samples (SSE) = 30 + 16 + 14 = 60

Calculation of Mean Sum Of Squares within samples (MSE)

$$MSE = \frac{SSE}{n-k} = \frac{60}{12} = 5$$

Calculation of ratio F

$$F = \frac{Variability\ between\ groups}{Variability\ within\ groups}$$

F- statistic =
$$\frac{MSC}{MSE}$$
 = 20/5 =4

The Table value of F at 5% level of significance for d.f 2 & 12 is 3.88

The calculated value of F > table value

HO is rejected. Hence there is significant difference in sample means

Two Way ANOVA

B

Data required

 When 2 independent variables (Nominal/categorical) have an effect on one dependent variable (ordinal or ratio measurement scale)

- Compares relative influences on Dependent Variable
- Examine interactions between independent variables
- Just as we had Sums of Squares and Mean Squares in One-way ANOVA, we have the same in Two-way ANOVA.

Two way ANOVA

Include tests of three null hypotheses:

- Means of observations grouped by one factor are same;
- Means of observations grouped by the other factor are the same; and
- 3) There is no interaction between the two factors. The interaction test tells whether the effects of one factor depend on the other factor

Example-

we have test score of boys & girls in age group of 10 yr,11yr & 12 yr. If we want to study the effect of gender & age on score.

Two independent factors- Gender, Age Dependent factor - Test score

Calculate Degrees of Freedom for

- D.f between samples = K-1
- D.f within samples = n- k
- D.f subjects=r -1
- D.f error= d.f within- d.f subjects
- D.f total = n-1

State decision rule

If calculated value of F >table value of F, reject Ho

Calculate test statistic (f= MS bw/ MS error)

	SS	DF	MS	F
Between				
Within -subjects - error				
Total				

State Results & conclusion